Exercise 5

Use the Laplace transform method to solve the Volterra integral equations of the first kind:

$$
x=\int_{0}^{x}(1+2(x-t)) u(t) d t
$$

Solution

The Laplace transform of a function $f(x)$ is defined as

$$
\mathcal{L}\{f(x)\}=F(s)=\int_{0}^{\infty} e^{-s x} f(x) d x
$$

According to the convolution theorem, the product of two Laplace transforms can be expressed as a transformed convolution integral.

$$
F(s) G(s)=\mathcal{L}\left\{\int_{0}^{x} f(x-t) g(t) d t\right\}
$$

Take the Laplace transform of both sides of the integral equation.

$$
\mathcal{L}\{x\}=\mathcal{L}\left\{\int_{0}^{x}[1+2(x-t)] u(t) d t\right\}
$$

Apply the convolution theorem and use the fact that the Laplace transform is linear on the right side.

$$
\begin{aligned}
\mathcal{L}\{x\} & =\mathcal{L}\{1+2 x\} U(s) \\
& =(\mathcal{L}\{1\}+2 \mathcal{L}\{x\}) U(s)
\end{aligned}
$$

Solve for $U(s)$.

$$
\begin{aligned}
U(s) & =\frac{\mathcal{L}\{x\}}{\mathcal{L}\{1\}+2 \mathcal{L}\{x\}} \\
& =\frac{\frac{1}{s^{2}}}{\frac{1}{s}+2 \frac{1}{s^{2}}} \\
& =\frac{1}{s+2}
\end{aligned}
$$

Take the inverse Laplace transform of $U(s)$ to get the desired solution.

$$
\begin{aligned}
u(x) & =\mathcal{L}^{-1}\{U(s)\} \\
& =\mathcal{L}^{-1}\left\{\frac{1}{s+2}\right\} \\
& =e^{-2 x}
\end{aligned}
$$

